1. Aims

- ► To **automate** a majority of the **cryptanalysis** that has already been carried out on Kryptos
- ► To use **computing** to **decipher** the final section of Kryptos, known as K4

2. Transcript of Kryptos ciphertext

EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ YQTQUXQBQVYUVLLTREVJYQTMKYRDMFD VFPJUDEEHZWETZYVGWHKKQETGFQJNCE **GGWHKK?DQMCPFQZDQMMIAGPFXHQRLG** TIMVMZJANQLVKQEDAGDVFRPJUNGEUNA **QZGZLECGYUXUEENJTBJLBQCRTBJDFHRR YIZETKZEMVDUFKSJHKFWHKUWQLSZFTI** HHDDDUVH?DWKBFUFPWNTDFIYCUQZERE **EVLDKFEZMOQQJLTTUGSYQPFEUNLAVIDX** FLGGTEZ?FKZBSFDQVGOGIPUFXHHDRKF FHQNTGPUAECNUVPDJMQCLQUMUNEDFQ ELZZVRRGKFFVOEEXBDMVPNFQXEZLGRE **DNQFMPNZGLFLPMRJQYALMGNUVPDXVKP** DQUMEBEDMHDAFMJGZNUPLGEWJLLAETG **ENDYAHROHNLSRHEOCPTEOIBIDYSHNAIA** CHTNREYULDSLLSLLNOHSNOSMRWXMNE **TPRNGATIHNRARPESLNNELEBLPIIACAE** WMTWNDITEENRAHCTENEUDRETNHAEOE TFOLSEDTIWENHAEIOYTEYQHEENCTAYCR EIFTBRSPAMHHEWENATAMATEGYEERLB TEEFOASFIOTUETUAEOTOARMAEERTNRTI **BSEDDNIAAHTTMSTEWPIEROAGRIEWFEB** AECTDDHILCEIHSITEGOEAOSDDRYDLORIT RKLMLEHAGTDHARDPNEOHMGFMFEUHE ECDMRIPFEIMEHNLSSTTRTVDOHW? OBKR **UOXOGHULBSOLIFBBWFLRVQQPRNGKSSO** TWTQSJQSSEKZZWATJKLUDIAWINFBNYP VTTMZFPKWGDKZXTJCDIGKUHUAUEKCAR

K1 - Solved using Vigenére cipher: Keyword - Palimpsest K2 - Solved using Vigenére cipher: Keyword - Abscissa **K3** - Solved using **Transposition** cipher K4 - UNSOLVED

English alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ Kryptos alphabet: KRYPTOSABCDEFGHIJLMNQUVWXZ

- **Transposition Cipher**

4. Vigenére cipher

when deciphering K1 and K2.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Κ	R	Y	Ρ	Т	0	S	А	В	С	D	Е	F	G	Η		J	L	Μ	Ν	Q	U	V	W	Х	Ζ

If Σ is the alphabet of length *I*, with *m* being the length of the key, Vigenére encryption and decryption can be written;

 $C_i = E_{\mathcal{K}}(M_i)$ $D_i = D_k$

References: .National Security Agency. 1993, June 9. CIA KRYPTOS sculpture - Challenge and resolution. United States Government - Memorandum. https://docs.google.com/file/d/0B7G1aFZQuZtXRmRkcmhkNGtqQ2c/edit. 2. Stein, D. 1999. Cracking the Courtyard Crypto. https://nsarchive2.gwu.edu//NSAEBB/NSAEBB431/docs/intell_ebb_010.PDF

Kryptos: A 29 year old mystery Alfie Baines* — 170180540 a.e.baines@newcastle.ac.uk

School of Mathematics, Statistics and Physics Supervisor: Dr Stuart Hall

3. Frequency analysis

Occurrences of J in each row of ciphertext

► By analysing how often letters appear in each row, it became obvious that the majority of rows 15-28 were written in English, but had been reordered - typical of a

► When comparing the frequency of letters in the green section to the typical letter frequencies of the English alphabet, it was almost identical

The alphanumeric ordering of the Kryptos alphabet which is used

$$K(M_i) = (M_i + K_{(i \mod m)}) \mod I$$
 (1)
 $K(C_i) = (C_i - K_{(i \mod m)}) \mod I$ (2)

5. Index of coincidence

The **index of coincidence (IC)** is the probability that two randomly chosen letters in a block of text are identical. We know $IC_{english} \approx 0.067$, and $IC_{random} \approx 0.0385$

$$\mathsf{IC} = \frac{1}{N(N-1)} \sum_{i=1}^{n} F_i(F_i-1)$$

- \blacktriangleright *N* is the length of the text
- \blacktriangleright *n* is the length of the alphabet
- \blacktriangleright F_i is the frequency of the *i*th letter in the alphabet

Index of Coincidence against Number of Alphabets for K1

Index of Coincidence against Number of Alphabets for K2

- ▶ In the first plot, there are peaks at 5, 10, 13 and 15 alphabets. This indicates that the length of the keyword for the Vigenére deciphering is a multiple of 5. Starting with a keyword of length 10, as it has the highest peak, lead to **'PALIMPSEST'** being identified as the key word.
- ► Similar observations for the second plot lead to 'ABSCISSA' eventually being identified as the keyword.

(3)

6. Transposition Cipher

- ► A transposition cipher takes the original text and creates an **anagram** of it based on a regular system or **algorithm**.
- ► By taking the text in the green section and reversing the order, you can use the following key, 1526374, based on the word KRYPTOS, to decipher the message.
- ► The key is obtained as follows:

(When read **horizontally**)

- ► The same method of using columns containing 4 letters and 3 letters is used in the rearrangement of the green section during decryption.
- ► The **similarity** between generating a key, and deciphering the text leads to the belief that this may be the **intended method** of decryption by the **author**.

7. K4 Discussion

- ► Frequency analysis of **K4**, with comparison to the English language, shows that the use of a poly-alphabetic cipher for encryption is plausible.
- ► IC calculations give a flat graph with no peaks near the IC of the English language. This contradicts the point above but allows the possibility of **multiple encryption** methods being used for K4.
- ► Using a clue given by Jim Sanborn, the sculpture creator, that **NYPVTTMZFPK** decrypts to **BERLINCLOCK**, possible shifts for a polyalphabetic cipher are: 11, 17, 2, 5, 15, 9, 8, 7, 20, 0

8. Future work

- ► Research how **Hamiltonian cycles** can be used to solve a large Transposition cipher and normal anagrams.
- ► Research how to use a combination of a Transposition cipher and a Vigenére cipher to solve the final part of Kryptos.